出版國家:Singapore
出版周期:季刊
影響因子:1.017
研究領(lǐng)域:數(shù)學(xué)跨學(xué)科應(yīng)用
5年影響因子:1.019
國外數(shù)據(jù)庫收錄:IM,1.017" />
醫(yī)學(xué)全在線
醫(yī)學(xué)全在線首頁-醫(yī)師-藥師-護(hù)士-衛(wèi)生資格-高級職稱-考試題庫-網(wǎng)校-考研-圖譜-下載-招聘  
分類
國家級省級浙江省各省雜志
科技核心北大核心CSCDCSCD擴(kuò)展
工具
期刊知識寫作指導(dǎo) 論文投稿推薦期刊
期刊驗(yàn)證論文檢測 錄用通知往期目錄
SCI
SCI指導(dǎo)影響因子
期刊點(diǎn)評基金動態(tài)
其它
經(jīng)濟(jì)教育計算機(jī)
建筑體育農(nóng)業(yè)
北京|天津|河北|山西|湖北|江蘇|安徽|山東|上海|浙江|江西|福建|湖南|寧夏|內(nèi)蒙古|河南
四川|重慶|貴州|云南|遼寧|吉林|廣東|廣西|海南|陜西|甘肅|新疆|青海|衛(wèi)生部直屬|黑龍江|兵團(tuán)
您現(xiàn)在的位置: 醫(yī)學(xué)全在線 > 醫(yī)學(xué)論文 > SCI期刊 > 正文:International journal of bifurcation and chaos if:1.017
    

International journal of bifurcation and chaos


International journal of bifurcation and chaos
影響因子: 1.017
I S S N: 0218-1274
出 版 社: World Scientific Publishing Co
出 版 地: Singapore
出版國家: Singapore
刊  期: 季刊
創(chuàng)刊時間: 1991
語  種: 英文
審稿周期: 較快,2-4周
中科院分區(qū): 3
投稿命中率: 容易
國外數(shù)據(jù)庫收錄: IM
中國收錄文章數(shù):
5年影響因子: 1.019
研究領(lǐng)域: 數(shù)學(xué)跨學(xué)科應(yīng)用
官方鏈接: http://www.worldscientific.com/worldscinet/ijbc
投稿須知: http://www.worldscientific.com/worldscinet/ijbc

期刊介紹:

The International Journal of Bifurcation and Chaos is widely regarded as the leading journal in the exciting field of chaos and nonlinear science. The primary objective of this journal is to provide a single forum for this multidisciplinary discipline - a forum specifically designed for an interdisciplinary audience, a forum accessible and affordable to all. Real-world problems and applications will be emphasized. Our goal is to bring together, in one periodical, papers of the highest quality and greatest importance on every aspect of nonlinear dynamics, phenomena, modeling, and complexity, thereby providing a focus and catalyst for the timely dissemination and cross-fertilization of new ideas, principles, and techniques across a broad interdisciplinary front.The scope of this journal encompasses experimental, computational, and theoretical aspects of bifurcations, chaos and complexity of biological, economic, engineering, fluid dynamic, neural, physical, social, and other dynamical systems. This broad but focused coverage includes, but is not restricted to, those areas of expertise provided by the members of the editorial board, whose composition will evolve continuously in order to respond to emerging new areas and directions in nonlinear dynamics and complexity.
...
關(guān)于我們 - 聯(lián)系我們 -版權(quán)申明 -誠聘英才 - 網(wǎng)站地圖 - 網(wǎng)絡(luò)課程 - 幫助
醫(yī)學(xué)全在線 版權(quán)所有© CopyRight 2006-2046, MED126.COM, All Rights Reserved
浙ICP備12017320號
百度大聯(lián)盟認(rèn)證綠色會員實(shí)名網(wǎng)站 360認(rèn)證可信網(wǎng)站 中網(wǎng)驗(yàn)證